Acute changes in systemic hemodynamics and serum vasopressin after complete cervical spinal cord injury in piglets

Michael Zahra, Amer Samdani, Kurt Piggott, Manuel Gonzalez-Brito, Juan Solano, Roosevelt De Los Santo, Juan C. Buitrago, Farid Alam, Dansha He, John P. Gaughan, Randal Betz, Dalton Dietrich, John Kuluz

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Background: Spinal cord injury (SCI) produces acute hemodynamic alterations through disruption of sympathetic output of the autonomic nervous system and places individuals with SCI at high risk of secondary ischemic insult to the spinal cord as well as to other organs. The purpose of this study was to examine hemodynamics and serum vasopressin concentration in the acute period following complete cervical SCI in piglets. Methods: We developed a new model of traumatic complete cervical SCI in piglets and measured acute hemodynamic variables and serum arginine vasopressin (AVP) concentrations at baseline and for 4 h after SCI under fentanyl anesthesia. Results: Complete cervical SCI caused an immediate tachycardia which lasted for approximately 1 h, immediate hypotension which was sustained for the 4-h duration of the study, decreases in both systemic and pulmonary vascular resistance, and a compensatory increase in cardiac output, which resulted initially from an increase in heart rate (HR) but was later sustained after resolution of tachycardia by an increase in cardiac stroke volume. Serum AVP concentration increased significantly after SCI and did not change in the control group. Neurogenic shock did not occur due to the robust increase in cardiac output and cardiac stroke volume. Conclusions: Complete cervical SCI produces hemodynamic alterations consistent with the withdrawal of sympathetic tone. Although mean arterial pressure (MAP) decreased significantly after SCI, the increase in serum vasopressin may have played a role in maintaining blood pressure and preventing circulatory collapse, a complication which is encountered frequently in patients with cervical and upper thoracic SCI.

Original languageEnglish (US)
Pages (from-to)132-140
Number of pages9
JournalNeurocritical Care
Issue number1
StatePublished - Aug 2010


  • Blood pressure
  • Cardiac output
  • Cardiovascular
  • Children
  • Hemodynamics
  • Hypotension
  • Infant
  • Neurogenic shock
  • Pediatric spinal cord injury
  • Pediatrics
  • Piglets
  • Pulmonary vascular resistance
  • Resuscitation
  • Secondary insult
  • Secondary ischemia
  • Spinal cord
  • Spinal cord blood flow
  • Spinal cord injury
  • Stroke volume
  • Symapthetic system
  • Systemic vascular resistance
  • Trauma
  • Vasoconstriction
  • Vasodilation
  • Vasopressin

ASJC Scopus subject areas

  • Clinical Neurology
  • Critical Care and Intensive Care Medicine


Dive into the research topics of 'Acute changes in systemic hemodynamics and serum vasopressin after complete cervical spinal cord injury in piglets'. Together they form a unique fingerprint.

Cite this