A regional modeling study of the entraining Mediterranean outflow

Xiaobiao Xu, E. P. Chassignet, J. F. Price, T. M. Özgökmen, H. Peters

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


We have evaluated a regional-scale simulation of the Mediterranean outflow by comparison with field data obtained in the 1988 Gulf of Cádiz Expedition. Our ocean model is based upon the Hybrid Coordinate Ocean Model (HYCOM) and includes the Richardson number-dependent entrainment parameterization of Xu et al. (2006). Given realistic topography and sufficient resolution, the model reproduces naturally the major, observed features of the Mediterranean outflow in the Gulf of Cádiz: the downstream evolution of temperature, salinity, and velocity profiles, the mean path and the spreading of the outflow plume, and most importantly, the localized, strong entrainment that has been observed to occur just west of the Strait of Gibraltar. As in all numerical solutions, there is some sensitivity to horizontal and vertical resolution. When the resolution is made coarser, the simulated currents are less vigorous and there is consequently less entrainment. Our Richardson number-dependent entrainment parameterization is therefore not recommended for direct application in coarse-resolution climate models. We have used the high-resolution regional model to investigate the response of the Mediterranean outflow to a change in the fteshwater balance over the Mediterranean basin. The results are found in close agreement with the marginal sea boundary condition (MSBC): A more saline and dense Mediterranean deep water generates a significantly greater volume transport of the Mediterranean product water having only very slightly greater salinity.

Original languageEnglish (US)
Article numberC12005
JournalJournal of Geophysical Research: Oceans
Issue number12
StatePublished - Dec 8 2007

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science
  • Astronomy and Astrophysics
  • Oceanography


Dive into the research topics of 'A regional modeling study of the entraining Mediterranean outflow'. Together they form a unique fingerprint.

Cite this