A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain

Tamay M Ozgokmen, Oleg E. Esenkov, Donald Olson

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase.

Original languageEnglish (US)
Pages (from-to)463-487
Number of pages25
JournalJournal of Marine Research
Volume56
Issue number2
StatePublished - 1998

Fingerprint

mixed layer
convection
salinity
eddy
boundary condition
fluid

ASJC Scopus subject areas

  • Oceanography

Cite this

@article{90fdefbf14284408b12db00d483ea27d,
title = "A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain",
abstract = "The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase.",
author = "Ozgokmen, {Tamay M} and Esenkov, {Oleg E.} and Donald Olson",
year = "1998",
language = "English (US)",
volume = "56",
pages = "463--487",
journal = "Journal of Marine Research",
issn = "0022-2402",
publisher = "Yale University",
number = "2",

}

TY - JOUR

T1 - A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain

AU - Ozgokmen, Tamay M

AU - Esenkov, Oleg E.

AU - Olson, Donald

PY - 1998

Y1 - 1998

N2 - The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase.

AB - The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase.

UR - http://www.scopus.com/inward/record.url?scp=0031669493&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031669493&partnerID=8YFLogxK

M3 - Article

VL - 56

SP - 463

EP - 487

JO - Journal of Marine Research

JF - Journal of Marine Research

SN - 0022-2402

IS - 2

ER -