A geometric characterization of toric varieties

Morgan Brown, James Mckernan, Roberto Svaldi, Hong R. Zong

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.

Original languageEnglish (US)
Pages (from-to)923-968
Number of pages46
JournalDuke Mathematical Journal
Volume167
Issue number5
DOIs
StatePublished - Apr 1 2018

Fingerprint

Toric Varieties

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

A geometric characterization of toric varieties. / Brown, Morgan; Mckernan, James; Svaldi, Roberto; Zong, Hong R.

In: Duke Mathematical Journal, Vol. 167, No. 5, 01.04.2018, p. 923-968.

Research output: Contribution to journalArticle

Brown, Morgan ; Mckernan, James ; Svaldi, Roberto ; Zong, Hong R. / A geometric characterization of toric varieties. In: Duke Mathematical Journal. 2018 ; Vol. 167, No. 5. pp. 923-968.
@article{c52bd3227851493c8a240277ba291068,
title = "A geometric characterization of toric varieties",
abstract = "We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.",
author = "Morgan Brown and James Mckernan and Roberto Svaldi and Zong, {Hong R.}",
year = "2018",
month = "4",
day = "1",
doi = "10.1215/00127094-2017-0047",
language = "English (US)",
volume = "167",
pages = "923--968",
journal = "Duke Mathematical Journal",
issn = "0012-7094",
publisher = "Duke University Press",
number = "5",

}

TY - JOUR

T1 - A geometric characterization of toric varieties

AU - Brown, Morgan

AU - Mckernan, James

AU - Svaldi, Roberto

AU - Zong, Hong R.

PY - 2018/4/1

Y1 - 2018/4/1

N2 - We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.

AB - We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.

UR - http://www.scopus.com/inward/record.url?scp=85044729839&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044729839&partnerID=8YFLogxK

U2 - 10.1215/00127094-2017-0047

DO - 10.1215/00127094-2017-0047

M3 - Article

VL - 167

SP - 923

EP - 968

JO - Duke Mathematical Journal

JF - Duke Mathematical Journal

SN - 0012-7094

IS - 5

ER -