A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging

Parisa Forouzannezhad, Alireza Abbaspour, Chunfei Li, Chen Fang, Ulyana Williams, Mercedes Cabrerizo, Armando Barreto, Jean Andrian, Naphtali Rishe, Rosie E. Curiel, David Loewenstein, Ranjan Duara, Malek Adjouadi

Research output: Contribution to journalArticle

Abstract

Background: Diagnosis of early mild cognitive impairment (EMCI) as a prodromal stage of Alzheimer's disease (AD) with its delineation from the cognitively normal (CN) group remains a challenging but essential step for the planning of early treatment. Although several studies have focused on the MCI diagnosis, this study introduces the early stage of MCI to assess more thoroughly the earliest signs of disease manifestation and progression. New method: We used random forest feature selection model with a Gaussian-based algorithm to perform method evaluation. This integrated method serves to define multivariate normal distributions in order to classify different stages of AD, with the focus placed on detecting EMCI subjects in the most challenging classification of CN vs. EMCI. Results: Using 896 participants classified into the four categories of CN, EMCI, late mild cognitive impairment (LMCI) and AD, the results show that the EMCI group can be delineated from the CN group with a relatively high accuracy of 78.8% and sensitivity of 81.3%. Comparison with existing method(s): The feature selection model and classifier are compared with some other prominent algorithms. Although higher accuracy has been achieved using the Gaussian process (GP) model (78.8%) over the SVM classifier (75.6%) for CN vs. EMCI classification, with 0.05 being the cutoff for significance, and based on student's t-test, it was determined that the differences for accuracy, sensitivity, specificity between the GP method and support vector machine (SVM) are not statistically significant. Conclusion: Addressing the challenging classification of CN vs. EMCI provides useful information to help clinicians and researchers determine essential measures that can help in the early detection of AD.

Original languageEnglish (US)
Article number108544
JournalJournal of Neuroscience Methods
Volume333
DOIs
StatePublished - Mar 1 2020

    Fingerprint

Keywords

  • Alzheimer's disease
  • Early Mild Cognitive Impairment (EMCI)
  • Gaussian Process
  • Multimodal Neuroimaging
  • Random Forest

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Forouzannezhad, P., Abbaspour, A., Li, C., Fang, C., Williams, U., Cabrerizo, M., Barreto, A., Andrian, J., Rishe, N., Curiel, R. E., Loewenstein, D., Duara, R., & Adjouadi, M. (2020). A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging. Journal of Neuroscience Methods, 333, [108544]. https://doi.org/10.1016/j.jneumeth.2019.108544