A fuzzy approach for the analysis of rotor-bearing systems with uncertainties

Singiresu S. Rao, Yazhao Qiu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The components of most structural and mechanical systems exhibit considerable variations or uncertainties in their properties and the performance characteristics of such systems are subject to uncertainties. In the case of a rotor bearing system, the nonlinear bearing restoring force is usually represented as a third or fourth power of displacement or as a piecewise linear function of displacement. The coefficients of these models are acquired from experiments and approximations, and will vary considerably during the operation of the bearing. Hence it is more reasonable to treat them as uncertain values. Other bearing parameters such as the inertial properties of concentrated disks, distributed mass and damping of the rotating assemblies are also uncertain due to manufacturing and assembly errors and imprecise operating conditions. It is known that the vibration response of a rotor is highly sensitive to small fluctuations or variations in the bearing parameters. Therefore, any realistic analysis and design of rotor-bearing systems must take the uncertainties into account. In this paper, a methodology is presented for the fuzzy analysis of nonlinear rotor-bearing systems along with numerical results to demonstrate the computational feasibility of the methodology.

Original languageEnglish (US)
Title of host publicationASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Pages1033-1044
Number of pages12
EditionPARTS A AND B
DOIs
StatePublished - 2011
EventASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011 - Washington, DC, United States
Duration: Aug 28 2011Aug 31 2011

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume1

Other

OtherASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
CountryUnited States
CityWashington, DC
Period8/28/118/31/11

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'A fuzzy approach for the analysis of rotor-bearing systems with uncertainties'. Together they form a unique fingerprint.

Cite this