A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces

S. P. Kim, J. C. Sanchez, Y. N. Rao, D. Erdogmus, J. M. Carmena, M. A. Lebedev, M. A.L. Nicolelis, J. C. Principe

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.

Original languageEnglish (US)
Article number009
Pages (from-to)145-161
Number of pages17
JournalJournal of Neural Engineering
Volume3
Issue number2
DOIs
StatePublished - Jun 1 2006

ASJC Scopus subject areas

  • Biomedical Engineering
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces'. Together they form a unique fingerprint.

Cite this