2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers in Vivo

Gregory Maschek, Niramol Savaraj, Waldemar Priebe, Paul G Braunschweiger, Kara Hamilton, George F. Tidmarsh, Linda R. De Young, Theodore Lampidis

Research output: Contribution to journalArticle

308 Citations (Scopus)

Abstract

Slow-growing cell populations located within solid tumors are difficult to target selectively because most cells in normal tissues also have low replication rates. However, a distinguishing feature between slow-growing normal and tumor cells is the hypoxic microenvironment of the latter, which makes them extraordinarily dependent on anaerobic glycolysis for survival. Previously, we have shown that hypoxic tumor cells exhibit increased sensitivity to inhibitors of glycolysis in three distinct in vitro models. Based on these results, we predicted that combination therapy of a chemotherapeutic agent to target rapidly dividing cells and a glycolytic inhibitor to target slow-growing tumor cells would have better efficacy than either agent alone. Here, we test this strategy in vivo using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) in combination with Adriamycin (ADR) or paclitaxel in nude mouse xenograft models of human osteosarcoma and non-small cell lung cancer. Nude mice implanted with osteosarcoma cells were divided into four groups as follows: (a) untreated controls; (b) mice treated with ADR alone; (c) mice treated with 2-DG alone; or (d) mice treated with a combination of ADR + 2-DG. Treatment began when tumors were either 50 or 300 mm3 in volume. Starting with small or large tumors, the ADR + 2-DG combination treatment resulted in significantly slower tumor growth (and therefore longer survival) than the control, 2-DG, or ADR treatments (P < 0.0001). Similar beneficial effects of combination treatment were found with 2-DG and paclitaxel in the MV522 non-small cell lung cancer xenograft model. In summary, the treatment of tumors with both the glycolytic inhibitor 2-DG and ADR or paclitaxel results in a significant reduction in tumor growth compared with either agent alone. Overall, these results, combined with our in vitro data, provide a rationale for initiating clinical trials using glycolytic inhibitors in combination with chemotherapeutic agents to increase their therapeutic effectiveness.

Original languageEnglish
Pages (from-to)31-34
Number of pages4
JournalCancer Research
Volume64
Issue number1
DOIs
StatePublished - Jan 1 2004

Fingerprint

Deoxyglucose
Osteosarcoma
Paclitaxel
Non-Small Cell Lung Carcinoma
Doxorubicin
Neoplasms
Glycolysis
Heterografts
Nude Mice
Survival
Growth
Clinical Trials
Therapeutics

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers in Vivo. / Maschek, Gregory; Savaraj, Niramol; Priebe, Waldemar; Braunschweiger, Paul G; Hamilton, Kara; Tidmarsh, George F.; De Young, Linda R.; Lampidis, Theodore.

In: Cancer Research, Vol. 64, No. 1, 01.01.2004, p. 31-34.

Research output: Contribution to journalArticle

Maschek, Gregory ; Savaraj, Niramol ; Priebe, Waldemar ; Braunschweiger, Paul G ; Hamilton, Kara ; Tidmarsh, George F. ; De Young, Linda R. ; Lampidis, Theodore. / 2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers in Vivo. In: Cancer Research. 2004 ; Vol. 64, No. 1. pp. 31-34.
@article{c3bb07e5676b472296c89773caed113f,
title = "2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers in Vivo",
abstract = "Slow-growing cell populations located within solid tumors are difficult to target selectively because most cells in normal tissues also have low replication rates. However, a distinguishing feature between slow-growing normal and tumor cells is the hypoxic microenvironment of the latter, which makes them extraordinarily dependent on anaerobic glycolysis for survival. Previously, we have shown that hypoxic tumor cells exhibit increased sensitivity to inhibitors of glycolysis in three distinct in vitro models. Based on these results, we predicted that combination therapy of a chemotherapeutic agent to target rapidly dividing cells and a glycolytic inhibitor to target slow-growing tumor cells would have better efficacy than either agent alone. Here, we test this strategy in vivo using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) in combination with Adriamycin (ADR) or paclitaxel in nude mouse xenograft models of human osteosarcoma and non-small cell lung cancer. Nude mice implanted with osteosarcoma cells were divided into four groups as follows: (a) untreated controls; (b) mice treated with ADR alone; (c) mice treated with 2-DG alone; or (d) mice treated with a combination of ADR + 2-DG. Treatment began when tumors were either 50 or 300 mm3 in volume. Starting with small or large tumors, the ADR + 2-DG combination treatment resulted in significantly slower tumor growth (and therefore longer survival) than the control, 2-DG, or ADR treatments (P < 0.0001). Similar beneficial effects of combination treatment were found with 2-DG and paclitaxel in the MV522 non-small cell lung cancer xenograft model. In summary, the treatment of tumors with both the glycolytic inhibitor 2-DG and ADR or paclitaxel results in a significant reduction in tumor growth compared with either agent alone. Overall, these results, combined with our in vitro data, provide a rationale for initiating clinical trials using glycolytic inhibitors in combination with chemotherapeutic agents to increase their therapeutic effectiveness.",
author = "Gregory Maschek and Niramol Savaraj and Waldemar Priebe and Braunschweiger, {Paul G} and Kara Hamilton and Tidmarsh, {George F.} and {De Young}, {Linda R.} and Theodore Lampidis",
year = "2004",
month = "1",
day = "1",
doi = "10.1158/0008-5472.CAN-03-3294",
language = "English",
volume = "64",
pages = "31--34",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "1",

}

TY - JOUR

T1 - 2-Deoxy-D-glucose Increases the Efficacy of Adriamycin and Paclitaxel in Human Osteosarcoma and Non-Small Cell Lung Cancers in Vivo

AU - Maschek, Gregory

AU - Savaraj, Niramol

AU - Priebe, Waldemar

AU - Braunschweiger, Paul G

AU - Hamilton, Kara

AU - Tidmarsh, George F.

AU - De Young, Linda R.

AU - Lampidis, Theodore

PY - 2004/1/1

Y1 - 2004/1/1

N2 - Slow-growing cell populations located within solid tumors are difficult to target selectively because most cells in normal tissues also have low replication rates. However, a distinguishing feature between slow-growing normal and tumor cells is the hypoxic microenvironment of the latter, which makes them extraordinarily dependent on anaerobic glycolysis for survival. Previously, we have shown that hypoxic tumor cells exhibit increased sensitivity to inhibitors of glycolysis in three distinct in vitro models. Based on these results, we predicted that combination therapy of a chemotherapeutic agent to target rapidly dividing cells and a glycolytic inhibitor to target slow-growing tumor cells would have better efficacy than either agent alone. Here, we test this strategy in vivo using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) in combination with Adriamycin (ADR) or paclitaxel in nude mouse xenograft models of human osteosarcoma and non-small cell lung cancer. Nude mice implanted with osteosarcoma cells were divided into four groups as follows: (a) untreated controls; (b) mice treated with ADR alone; (c) mice treated with 2-DG alone; or (d) mice treated with a combination of ADR + 2-DG. Treatment began when tumors were either 50 or 300 mm3 in volume. Starting with small or large tumors, the ADR + 2-DG combination treatment resulted in significantly slower tumor growth (and therefore longer survival) than the control, 2-DG, or ADR treatments (P < 0.0001). Similar beneficial effects of combination treatment were found with 2-DG and paclitaxel in the MV522 non-small cell lung cancer xenograft model. In summary, the treatment of tumors with both the glycolytic inhibitor 2-DG and ADR or paclitaxel results in a significant reduction in tumor growth compared with either agent alone. Overall, these results, combined with our in vitro data, provide a rationale for initiating clinical trials using glycolytic inhibitors in combination with chemotherapeutic agents to increase their therapeutic effectiveness.

AB - Slow-growing cell populations located within solid tumors are difficult to target selectively because most cells in normal tissues also have low replication rates. However, a distinguishing feature between slow-growing normal and tumor cells is the hypoxic microenvironment of the latter, which makes them extraordinarily dependent on anaerobic glycolysis for survival. Previously, we have shown that hypoxic tumor cells exhibit increased sensitivity to inhibitors of glycolysis in three distinct in vitro models. Based on these results, we predicted that combination therapy of a chemotherapeutic agent to target rapidly dividing cells and a glycolytic inhibitor to target slow-growing tumor cells would have better efficacy than either agent alone. Here, we test this strategy in vivo using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) in combination with Adriamycin (ADR) or paclitaxel in nude mouse xenograft models of human osteosarcoma and non-small cell lung cancer. Nude mice implanted with osteosarcoma cells were divided into four groups as follows: (a) untreated controls; (b) mice treated with ADR alone; (c) mice treated with 2-DG alone; or (d) mice treated with a combination of ADR + 2-DG. Treatment began when tumors were either 50 or 300 mm3 in volume. Starting with small or large tumors, the ADR + 2-DG combination treatment resulted in significantly slower tumor growth (and therefore longer survival) than the control, 2-DG, or ADR treatments (P < 0.0001). Similar beneficial effects of combination treatment were found with 2-DG and paclitaxel in the MV522 non-small cell lung cancer xenograft model. In summary, the treatment of tumors with both the glycolytic inhibitor 2-DG and ADR or paclitaxel results in a significant reduction in tumor growth compared with either agent alone. Overall, these results, combined with our in vitro data, provide a rationale for initiating clinical trials using glycolytic inhibitors in combination with chemotherapeutic agents to increase their therapeutic effectiveness.

UR - http://www.scopus.com/inward/record.url?scp=1642494855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1642494855&partnerID=8YFLogxK

U2 - 10.1158/0008-5472.CAN-03-3294

DO - 10.1158/0008-5472.CAN-03-3294

M3 - Article

VL - 64

SP - 31

EP - 34

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 1

ER -