β-catenin is essential for patterning the maternally specified animal- vegetal axis in the sea urchin embryo

Athula Wikramanayake, L. Huang, W. H. Klein

Research output: Contribution to journalArticle

195 Citations (Scopus)

Abstract

In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal-vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal-vegetal axis. Our results also reveal similarities between the sea urchin animal-vegetal axis and the vertebrate dorsal-ventral axis, suggesting that these axes share a common evolutionary origin.

Original languageEnglish
Pages (from-to)9343-9348
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume95
Issue number16
DOIs
StatePublished - Aug 4 1998
Externally publishedYes

Fingerprint

Catenins
Sea Urchins
Embryonic Structures
Ectoderm
Blastomeres
Oogenesis
Endoderm
Fertilization
Vertebrates
Signal Transduction
Proteins

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{e3766f6b40dc40bc95b5efeff2a577d2,
title = "β-catenin is essential for patterning the maternally specified animal- vegetal axis in the sea urchin embryo",
abstract = "In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal-vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal-vegetal axis. Our results also reveal similarities between the sea urchin animal-vegetal axis and the vertebrate dorsal-ventral axis, suggesting that these axes share a common evolutionary origin.",
author = "Athula Wikramanayake and L. Huang and Klein, {W. H.}",
year = "1998",
month = "8",
day = "4",
doi = "10.1073/pnas.95.16.9343",
language = "English",
volume = "95",
pages = "9343--9348",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "16",

}

TY - JOUR

T1 - β-catenin is essential for patterning the maternally specified animal- vegetal axis in the sea urchin embryo

AU - Wikramanayake, Athula

AU - Huang, L.

AU - Klein, W. H.

PY - 1998/8/4

Y1 - 1998/8/4

N2 - In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal-vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal-vegetal axis. Our results also reveal similarities between the sea urchin animal-vegetal axis and the vertebrate dorsal-ventral axis, suggesting that these axes share a common evolutionary origin.

AB - In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal-vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal-vegetal axis. Our results also reveal similarities between the sea urchin animal-vegetal axis and the vertebrate dorsal-ventral axis, suggesting that these axes share a common evolutionary origin.

UR - http://www.scopus.com/inward/record.url?scp=0032483023&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032483023&partnerID=8YFLogxK

U2 - 10.1073/pnas.95.16.9343

DO - 10.1073/pnas.95.16.9343

M3 - Article

VL - 95

SP - 9343

EP - 9348

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 16

ER -