Transplantation of Autologous Schwann Cells for the Repair of Segmental Periphera

Project: Research project

Description

Peripheral nerve injuries are a source of chronic disability. Incomplete recovery from such injuries results in motor and sensory dysfunction and the potential for the development of chronic pain. The repair of human peripheral nerve injuries using traditional surgical techniques has limited success - particularly when a damaged nerve segment needs to be replaced. An injury to a long segment of peripheral nerve is often repaired using autologous grafting of "non-critical" sensory nerve. Although extensive axonal regeneration can be observed extending into these grafts, recovery of function may be absent or incomplete, if the axons fail to reach their intended target. The goal of this exploratory/developmental R21 proposal is to develop an artificial neural prosthesis consisting of autologous Schwann cells and to facilitate translation of a promising therapy more rapidly to the clinic. Our laboratory is exploring methods to combine autologous Schwann cells isolated using cell culture techniques with axon guidance channel (AGC) technology to potentially repair critical gap lengths with in the peripheral nervous system. We utilize a very well categorized AGC which is FDA approved - but has limited application in spanning lengthy nerve gaps. Preliminary findings from our lab demonstrate robust nerve regeneration when we combine cultured autologous Schwann cells suspended in serum with a NeuraGen(R) tube to repair a lengthy gap of the rat sciatic nerve (13 mm). To test the clinical efficacy of such constructs it is critically important to characterize the fate of the transplanted Schwann cells with regards to cell survival, migration and differentiation - myelin production (Aim 1). We also seek to determine the quantity of axonal regeneration and compare to cell free channels as well with repair strategies that are currently used clinically - autologous nerve grafts (Aim 2). Finally while many nerve repair paradigms demonstrate evidence of regeneration within the AGC we seek to further determine if the regeneration observed is physiologically relevant and include electrophysiologic, behavioral and pain assessments (Aim 3). If successful, the development of this reparative approach will bring together techniques which are readily available for clinical use and should rapidly accelerate the process of bringing an effective nerve repair strategy to peripheral nerve injury patients prior to the development of pain and chronic disability.
StatusFinished
Effective start/end date5/15/094/30/12

Funding

  • National Institutes of Health: $229,500.00
  • National Institutes of Health: $191,250.00

Fingerprint

Autologous Transplantation
Schwann Cells
Peripheral Nerve Injuries
Regeneration
Chronic Pain
Neural Prostheses
Transplants
Nerve Regeneration
Recovery of Function
Peripheral Nervous System
Wounds and Injuries
Sciatic Nerve
Pain Measurement
Myelin Sheath
Peripheral Nerves
Cell Movement
Axons
Cell Differentiation
Cell Survival
Cell Culture Techniques

ASJC

  • Medicine(all)
  • Neuroscience(all)