Mechanisms of Neuronal Maintenance and Protection.

Project: Research project

Project Details


DESCRIPTION (provided by applicant): Neurodegeneration can be triggered by a variety of genetic, epigenetic, and environmental factors. Healthy neurons are able to maintain their integrity throughout the life of an organism, suggesting the existence of a maintenance mechanism that allows neurons to sustain, mitigate or even repair damage. Recently, we have identified a neuronal maintenance factor NMNAT in a forward genetic screen in Drosophila. Loss of nmnat causes rapid and severe neurodegeneration, whereas over-expression of NMNAT protein offers protection against neurodegeneration. These findings suggest that normal level of NMNAT maintains neuronal homeostasis, and increased level offers protection. NMNAT is a highly conserved housekeeping enzyme, and the neuroprotective function of NMNAT has also been implicated in a mouse model of slow Wallerian Degeneration. Currently, the detailed mechanisms of this maintenance function and the protective capability of NMNAT in mammalian neurons are unclear. Our preliminary experiments suggest that in addition to its NAD synthesis activity, NMNAT has a chaperone function that is involved in regulating protein misfolding and degradation. We hypothesize that like other chaperones, NMNAT is up-regulated under stress, reduces protein aggregation, and thus protects neurons from degenerative conditions. In the proposed research, we will characterize the biochemical and cellular mechanisms underlying the protective process mediated by NMNAT using both Drosophila and mammalian primary neuronal models. In Specific Aim 1, we will use structure- function analysis to define the protein domains that are required for chaperone function, and characterize the transcriptional regulation of NMNAT under stress. In Specific Aim 2, we will first determine the neuroprotective activity of mammalian NMNAT isoforms in primary neurons, and then characterize the role of NMNAT in reducing protein aggregation-induced neurotoxicity. In Specific Aim 3, we will test whether NMNAT proteins can exert protective activity when their expression is induced after the onset of degeneration. For this last study, we will take advantage of the Drosophila genetic system and control the expression of NMNAT using a heat-inducible promoter. In summary, our proposed research in both Drosophila and mammalian model systems will help unmask the function of NMNAT and its regulation as a molecular chaperone, determine the neuroprotective properties of human NMNAT in primary neurons, and reveal the repair potential of NMNAT in neural regeneration after neuronal damage.
Effective start/end date7/15/096/30/15


  • National Institute of Neurological Disorders and Stroke: $316,514.00
  • National Institute of Neurological Disorders and Stroke: $331,341.00
  • National Institute of Neurological Disorders and Stroke: $327,994.00
  • National Institute of Neurological Disorders and Stroke: $327,500.00
  • National Institute of Neurological Disorders and Stroke: $327,994.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.